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Cognitive Radar-Based Sequence Design via
SINR Maximization

Linlong Wu, Prabhu Babu, and Daniel P. Palomar, Fellow, IEEE

Abstract—The ambiguity function plays an important role in
radar systems. In fact, many radar design problems can be in-
terpreted from the perspective of persuing desired ambiguity
functions to adapt to various application scenes. In this paper,
we consider designing a radar sequence, subject to a peak-to-
average power ratio (PAR) constraint, to maximize the signal-
to-interference plus noise ratio, which can also be interpreted as
designing a sequence with a desired ambiguity function. From an
optimization point of view, this is equivalent to optimizing a com-
plex quartic function with the PAR constraint. An efficient al-
gorithm based on the general majorization–minimization (MM)
method is developed to solve this problem with guaranteed conver-
gence to a stationary point under some mild conditions. In addi-
tion, the unit-modulus constraint, as a special case, is considered
and another algorithm is proposed, which is the combination of
the general MM and the coordinate descent method. Numerical
experiments show that the proposed algorithms can shape a de-
sired ambiguity function based on the prior information, and the
performance is much better compared with the existing methods.

Index Terms—Radar sequence design, SINR, ambiguity
function, majorization-minimization, coordinate descent.

I. INTRODUCTION

IN RADAR signal processing, the range-Doppler response of
a matched filter to a given finite energy signal with a delay

τ and normalized Doppler frequency f , is referred to as the
ambiguity function [1] and is defined as

R (τ, f) =
∫ ∞

−∞
u (t) u∗ (t − τ) ej2πf tdt, (1)

where u(t) is the radar signal emitted by the transmitter, and
τ and f denote the range and the normalized Doppler shift,
respectively.

If a baseband signal is modulated as a pulse-coded signal

u(t) =
N∑

n=1

s (n) pn (t), (2)
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where {s (n)}N
n=1 is the code sequence to be designed and pn (t)

is the ideal rectangular function, the discrete ambiguity function
becomes [2]

R (k, p) =
N∑

n=1

s (n) s∗ (n − k) ej2π
(n −k )

N p ,

k = −N + 1, . . . , N − 1, p = −N

2
, . . . ,

N

2
. (3)

If N is odd, then p = −N −1
2 , . . . , N −1

2 .
The ambiguity function plays an important role in the design

and study of radar systems. For a radar system, a good ambi-
guity function usually means a good ability to sense and detect.
The ideal ambiguity function is thumbtack-like, with the peak
corresponding to the range-Doppler bin of the target of interest.
However, it is impossible to obtain such an ambiguity func-
tion due to the energy limit of the transmitted sequence and the
constant volume property of the ambiguity function [1]. Besides
this, which ambiguity function should be preferred also depends
on the location of the clutters or interference of the surround-
ing environment. Therefore, in common cases, we are in such
a dilemma because although we understand the significance of
the ambiguity function, we do not know what its desired shape
is, except for the lower sidelobes of the autocorrelation. How-
ever, a cognitive approach to radar systems is discussed in [3],
which is accessible given the development in signal processing,
antennas and computers today and is becoming the leading ap-
proach for radar signal processing. Such cognitive radar systems
capitalize on the information obtained from the surrounding en-
vironment or the prior knowledge stored in the platform, and
they tell us the desired shape of the ambiguity function to some
extent, at least from the perspective of reducing the interference.
To be more specific, the response at some range-Doppler bins
corresponding to the known or predicted scatters reduces to be
as small as possible, while the response at the corresponding
range-Doppler bin of the target of interest is maintained at a
relatively high level.

The significance of the ambiguity function and the innovative
scheme of cognitive radar systems has motivated active research
in developing methods to design sequences with a desired am-
biguity function. Some papers focus on communications appli-
cations and consider the shaping of the autocorrelation function
only (ignoring the Doppler effect). Among them, [4] proposed
an algorithm called CAN to design a unimodular sequence with
low autocorrelation sidelobes by minimizing an “almost equiv-
alent” problem instead of the original integrated sidelobe level
(ISL) one, and then incorporated the spectral constraint in [5].
Later, [6] considered the ISL minimization problem directly,
and then [7] extended the solution to the weighted case and
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the �p -norm case. From the perspective of the ambiguity func-
tion, this kind of problems correspond to the design of a se-
quence with a desired zero-Doppler frequency ambiguity cut.
Further, [8] considered the sequence design for multiple-input-
multiple-output (MIMO) radar and shaped the autocorrelation
and the crosscorrelation simultaneously. Besides suppressing
auto/cross-correlation sidelobe levels, [9] also incorporated the
match of the desired beam pattern.

For radar systems, however, the Doppler effect cannot be ne-
glected and the complete ambiguity function needs to be consid-
ered, rather than just the autocorrelation. In [10], [11] and [12],
the authors considered the radar code design to achieve the best
detection performance in the presence of colored Gaussian dis-
turbance, and then formulated a nonconvex quadratic problem,
which was solved through semidefinite relaxation (SDR) and
then rank-one randomization. Note that the authors introduced
a similarity constraint, which was tantamount to imposing some
restrictions on the ambiguity function indirectly. In [13] and
[14], the authors extended the above work to the robust case
with an unknown Doppler frequency of the target. However, the
authors treated the disturbance as a whole and did not meticu-
lously consider the characteristics of interference, which in fact
could be obtained to some degree according to the cognitive
approach we mentioned above. In [15], the authors classified
the disturbance into signal-dependent interference and white
noise, and under the assumption of the matched filter, the au-
thors arrived at a quartic problem, which was solved based on
the maximum-block-improvement (MBI) method. Readers in-
terested in the MBI method may refer to [16] and the references
therein. However, we point out that the variant MBI approach
deployed in [15] is highly-computational and time-comsuming,
which is undesired for real-time applications like radar.

Most of the previous papers consider the design of unimodular
sequences. The peak-to-average power ratio (PAR) constraint is
a relaxed constraint in the practical sense, although mathemat-
ically a more general constraint as the unimodular case is just
a particular case. In this paper, with the PAR and finite energy
constraints, we focus on designing radar sequences to maximize
the SINR based on cognitive radar systems. After some approx-
imations, this problem can also be interpreted as designing se-
quences with desired ambiguity functions to adapt to specific
application scenarios. We develop an efficient algorithm, MI-
AFIS, based on the general majorization-minimization (MM)
method, with a guaranteed convergence to a stationary point un-
der some mild conditions. We also propose some acceleration
schemes with faster convergence. Note that the PAR constraint
is more general than the unit-modulus one, and MIAFIS can
still be deployed for the unimodular case. For the unimodular
case, we also propose a new algorithm, CIAFIS, which is the
combination of the MM method and coordinate descent method.

The rest of this paper is organized as follows. In Section II,
we introduce the system model and formulate the sequence
design problem of interest. In Section III, we first introduce
the general MM method briefly and then derive the MAIFIS
algorithm within the MM framework, followed by convergence
analysis and acceleration schemes. In Section IV, we consider a
special case of the problem in which the constraints are reduced

to the unit-modulus one, and the new CIAFIS algorithm is pro-
posed. In Section V, we compare MIAFIS with CIAFIS and
reveal the potential connections between MIAFIS and the tra-
ditional gradient projection method. In Section VI, we analyze
the performance of the proposed algorithms and compare them
with the existing methods. Finally, the conclusions are given
in Section VII.

Notation: Rn and Cn denote the n-dimensional real and com-
plex vector space, respectively. Rn×n and Cn×n denote the
n × n real and complex matrix space, respectively. Boldface
upper case letters stand for matrices. Boldface lower case letters
stand for column vectors. Standard lower case letters stand for
scalars. Re(x) and arg(x) denotes the element-wise real part and
the phase of a complex vector x, respectively. (x)T , (x)∗, (x)H ,
tr(x), vec(x), λmax(x) and λmin(x) denote the transpose, com-
plex conjugate, conjugate transpose, trace, vectorization, largest
eigenvalue, and smallest eigenvalue of a matrix X, respectively.
Diag(x) stands for a diagonal matrix with its principal diago-
nal filled with x. I denotes the identity matrix. xi denotes the
i-th element of x. |·| denotes the modulus of a complex scalar.
‖ · ‖ denotes the �2-norm of a vector. � denotes the Hadamard
product. ∇(·) denotes the gradient of a vector function, and E(·)
denotes the statistic expectation.

II. SYSTEM MODEL & PROBLEM FORMULATION

Consider a monostatic radar system transmitting a coherent
burst of coded pulses, with the N−dimensional vector of obser-
vations modelled as [15]:

v = αs � p (νd) + d (s) + n, (4)

where α is a complex parameter accounting for channel propaga-
tion and backscattering effects, s is the vector of coded elements,
p(νd) = [1, ej2πνd , . . . , ej2π (N −1)νd ]T is the temporal steering
vector, νd is the normalized Doppler frequency of the target of
interest, d(s) is the vector of interfering samples, and n is the
vector of the noise samples following the normal distribution
N(0, σ2

nI) uncorrelated with d(s).
Note that the interfering vector d(s) accounts for the clutter

returns, which can be expressed as [15]:

d (s) =
Nt∑
i=1

ρiJri (s � p (νi)) , (5)

where Nt is the total number of interfering scatterers, rk ∈
{0, 1, . . . N − 1}, ρi and νi are, respectively, the range po-
sition, the echo complex amplitude, and the normalized
Doppler frequency of the i-th scatterer, and Jri , ri ∈ {−N +
1, . . . , 0, . . . , N − 1} is the N × N shift matrix given by

Jri (m, n) =

{
1, m − n = ri

0, m − n �= ri.
(6)

In fact, once the target is defined to be threatening, a track file
in the search-and-track modality is opened and continuously up-
dated [15]. This track file usually contains several information,
including Doppler velocity measurements [17]. For the details
of how the Doppler shift is measured, please refer to Chapter 17
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in [18] for details. Thus, we reasonably assume that the Doppler
frequency of the target of interest νd is known. The output of
the matched filter to the echo is given by

(s � p (νd))
H v = α ‖s‖2 + (s � p (νd))

H d (s)

+ (s � p (νd))
H n, (7)

where the last two terms are the disturbance to the target
detection.

Consequently, the disturbance power after matched filtering
is

E

[∣∣∣(s � p (νd))
H d (s) + (s � p (νd))

H n
∣∣∣2
]

= E

[∣∣∣(s � p (νd))
H d (s)

∣∣∣2
]

+ E

[∣∣∣(s � p (νd))
H n
∣∣∣2
]

= (s � p (νd))
H E
[
d (s)d (s)H

]
(s � p (νd)) + σ2

n ‖s‖2 .

(8)

Thus, the signal-to-interference plus noise ratio (SINR) is

SINR =
|α|2 ‖s‖4

(s � p (νd))
H E
[
d (s)d (s)H

]
(s � p (νd)) + σ2

n ‖s‖2
. (9)

The problem we will solve is formulated as

maximize
s

SINR

subject to PAR (s) ≤ γ (10)

‖s‖2 = N,

where ‖s‖2 = N denotes the energy constraint and

PAR (s) =
max

n=1,...,N

{
|sn |2

}
∑N

n=1 |sn |2 /N
, (11)

and γ is the parameter controlling the acceptable level of PAR
with 1 ≤ γ ≤ N .

Problem (10) is equivalent to

minimize
s

(s � p (νd))
H E
[
d (s)d (s)H

]
(s � p (νd))

subject to PAR (s) ≤ γ

‖s‖2 = N. (12)

In [15], the normalized Doppler frequency νi of the i-th
clutter is modelled as a uniformly distributed random vari-
able. After discretizing the normalized Doppler interval [− 1

2 , 1
2 ]

into Nν bins and approximating the expectation with the sam-
ple mean, the objective of problem (12) can be approximately
expressed as

(s � p (νd))
H E
[
d (s)d (s)H

]
(s � p (νd))

≈
N −1∑
r=0

Nν −1∑
h=0

p (r, h)
∣∣sH Jr Diag (p (νh)) s

∣∣2 , (13)

where νh = − 1
2 + h

Nv
, h = 0, 1, . . . , Nv , is the discrete nor-

malized Doppler frequency and the target Doppler frequency is

set as νh = 0 without loss of generality; p(r, h) is the interfer-
ence power for the range-Doppler bin (r, vh).

For the objective function of problem (12), there always
exists a one-to-one mapping k ∈ {1, 2, . . . , NNv} → (r, h) ∈
{0, 1, . . . , N − 1} × {0, 1, . . . , Nv − 1}. In the rest of the pa-
per, k is used to represent the corresponding (r, h) unless oth-
erwise specified. Let Ak = Jr Diag(p(νh)). Then problem (12)
can be written as

minimize
s

N Nν∑
k=1

pk

∣∣sH Aks
∣∣2

subject to PAR (s) ≤ γ

‖s‖2 = N, (14)

which we will solve in the following.
Before proceeding with the design of the solution to problem

(14), we address something of our problem formulation:
� |sH Aks| and {p(r, h)} are the modulus of the ambiguity

function of s and the clutter information at the range-
Doppler bin (r, h), respectively. Problem (14) can be in-
terpreted as follows: After perseiving the enviroment by
cognitive approaches, the clutter information incorporates
into pk s. By multipling p(r, h) with the square modulus of
the ambiguity function at the corresponding range-Doppler
bin (r, h) and then minimizing the sum, the designed se-
quence will has a desired ambiguity function with low
values in the range-Doppler bins where p(r, h)s have high
values.

� Our problem becomes the common ISL problem [4], [6] if
we let νh = 0 for all h and pk = 1 for all k, which means
all the scatters have the same Doppler frequency or we only
focus on a specific Doppler frequency of interest. Besides
this, if we let νh = 0 and choose different values of pk ’s,
the problem becomes a weighted ISL problem [5], [7].

� Note that γ is in the range [1, N ]. When γ = 1, the PAR
constraint, together with the constant energy constraint,
becomes the unit-modulus constraint, which is widely con-
sidered in the literature. By increasing the value of γ,
we are relaxing the problem and the value of the optimal
objective should be nonincreasing (probably decrease).

� The problem is hard to solve, due to the quartic objective
and the nonconvex constraints.

III. SEQUENCE DESIGN VIA MAJORIZATION-MINIMIZATION

In this section, we first introduce the general majorization-
minimization (MM) and then derive a simple algorithm based
on it. Last, we will analyze the convergence of the proposed
algorithm and provide two acceleration schemes.

A. Majorization-Minimization Method

The MM method is a powerful optimization scheme, espe-
cially when the problem is hard to tackle directly [19]. The idea
behind the MM algorithm is to convert the original problem
into a sequence of simpler problems to be solved until conver-
gence. The key to using the MM method is to construct a simple
majorized problem that can be solved efficiently [20].
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Consider a general optimization problem:

minimize
x

f(x)

subject to x ∈ X . (15)

Suppose the problem is hard to directly minimize. Following the
general MM idea, we first find u(x, x(�)), the surrogate function
of f(x), which should satisfy the following two requirements at
the point x(�) :

u
(
x, x(�)) ≥ f(x), for all x ∈ X (16)

u
(
x(�) , x(�)) = f

(
x(�)). (17)

Then the MM update is given by

x(�+1) = argmin
x∈X

u
(
x, x(�)). (18)

One interesting and useful property of MM methods is
monotonicity:

f
(
x(�+1)) ≤ u

(
x(�+1) , x(�)) ≤ u

(
x(�) , x(�))

= f
(
x(�)), (19)

where the first inequality follows from (16), the second one
follows from (18) and the last equality follows from (17).

If the objective function is already convex, then the MM al-
gorithm will converge to the global optimal point, assuming it
exists. If convexity or concavity fails, at least one subsequence
the MM algorithm generates will converge to one of the station-
ary points under some conditions. For more details about the
convergence, interested readers may refer to [21].

Two things need to be noted here. First, the convergence
speed of the MM algorithm is mainly determined by the surro-
gate function, i.e., how closely it resembles the original func-
tion. In some cases, if the surrogate function is ill-constructed,
some acceleration techniques have to be adopted. Second, from
(19), we see that even when x(�+1) is not the minimizer of
u(x, x(�)), the monotonicity can still be guaranteed as long as
it improves the function u(x(�+1) , x(�)) ≤ u(x(�) , x(�)), where
the equality means the algorithm has already found a stationary
point x(�+1) .

B. Majorized Iteration for Ambiguity Function Iterative
Shaping

The objective function of problem (14) can be equivalently
reformulated as

N Nν∑
k=1

pk

∣∣sH Aks
∣∣2 =

N Nν∑
k=1

pk |tr (AkS)|2

=
N Nν∑
k=1

pk

∣∣∣vec (S)H vec
(
Ak

)∣∣∣2

=
N Nν∑
k=1

pk vec (S)H Bvec (S) , (20)

where B =
∑N Nv

k=1 pk vec(Ak )vec(Ak )H .

Note that 0 
 B 
 tr (B) I with tr (B) given by

tr (B) = tr

(
N Nν∑
k=1

pk vec
(
Ak

)
vec
(
Ak

)H
)

=
N Nν∑
k=1

pk vec
(
Ak

)H
vec
(
Ak

)

=
N Nν∑
k=1

pk tr
(
AH

k Ak

)

=
N Nν∑
k=1

pk (N − r) . (21)

Since vec (S)H vec (S) = tr (SS) = tr
(
ssH ssH

)
= N 2 is a

constant, we further have the following equivalent problem:

minimize
S,s

vec (S)H (B − λu (B) I) vec (S)

subject to |sn | ≤
√

γ, n = 1, 2, . . . , N

‖s‖2 = N

S = ssH , (22)

where λu (B) =
∑N Nν

k=1 pk (N − r) is an upper bound of the
eigenvalues of B.

Note that the objective function of problem (22) is concave
now. We can construct the surrogate function of the objective
function of (22) by first-order approximation. Given S(�) =
s(�)(s(�))H at the �-th iteration, the first-order approximation is

u1
(
S, S(�)) = 2Re

(
vec (S)H (B − λu (B) I) vec

(
S(�)))

+ vec
(
S(�))H (λu (B) I − B) vec

(
S(�)). (23)

Ignoring the constant terms of (23), the majorized problem
of (22) at the point s(�) is given by

minimize
S,s

Re
(
vec (S)H (B − λu (B) I) vec

(
S(�)))

subject to |sn | ≤
√

γ, n = 1, 2, . . . , N

‖s‖2 = N

S = ssH . (24)

We can now undo the change of variable S = ssH in the
objective function of (24):

Re
(
vec (S)H (B − λu (B) I) vec

(
S(�)))

= Re

(
vec (S)H

(
N Nv∑
k=1

pk vec
(
Ak

)
vec
(
Ak

)H
)

vec
(
S(�))
)

− Re
(
λu (B) vec (S)H vec

(
S(�)))

= Re

(
tr

((
N Nv∑
k=1

pk tr(AH
k S(�))Ak − λu (B)S(�)

)
S

))

= Re

(
sH

(
N Nv∑
k=1

pk

(
s(�))H AH

k s(�)Ak

− λu (B) s(�)(s(�))H
)

s

)
, (25)
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and then problem (24) becomes

minimize
s

Re
(
sH
(
R − λu (B) s(�)(s(�))H) s

)

subject to |sn | ≤
√

γ, n = 1, 2, . . . , N (26)

‖s‖2 = N,

where

R =
N Nv∑
k=1

pk

(
s(�))H AH

k s(�)Ak . (27)

By defining P =
1
2
(R + RH ) , we have Re(sH Rs) =

1
2 (sH Rs + sH RH s) = sH Ps. Then problem (26) can be
rewritten as

minimize
s

sH
(
P − λu (B) s(�)(s(�))H) s

subject to |sn | ≤
√

γ, n = 1, 2, . . . , N (28)

‖s‖2 = N.

Now the objective function of problem (28) is quadratic in s,
but it is still hard to solve directly because the matrix P may be
indefinite. Thus we propose to majorize the objective function
of problem (28) at s(�) again to further simplify the problem we
need to solve at every iteration. Similarly to the construction
of the first surrogate function u1(S, S(�)), we need to find an
upper bound of the matrix (P − λu (B)s(�)(s(�))H ).

Before we find the upper bound, let us introduce a useful
theorem regarding the bounds of extreme eigenvalues of a Her-
mitian matrix.

Lemma 1: [22] Let M be an n × n complex matrix with real
eigenvalues λ(M), and let

m =
tr(M)

n
, s2 =

tr(M2)
n − m2 . (29)

Then

m − s
√

n − 1 ≤ λmin(M) ≤ m − s√
n − 1

, (30)

m +
s√

n − 1
≤ λmax(M) ≤ m + s

√
n − 1. (31)

We define

Pk =
(
s(�))H AH

k s(�)Ak + AH
k

(
s(�))H Aks(�) , (32)

and then P =
∑N Nv

k=1
pk

2 Pk . Each Pk , k = 1, 2, . . . , NNv , is
Hermitian and thus has real eigenvalues. By using Lemma 1 and
considering the special structure of Pk , we have the following
results.

Lemma 2: Let Pk be the matrix defined in (32). Then

λmax(Pk ) ≤

⎧⎨
⎩
√

2(N −r)(N −1)
N

∣∣∣(s(�)
)H

Aks(�)
∣∣∣ , for r �= 0

2N, for r = 0,

where r represents the range and r = � k
Nv

�.
Proof: See Appendix A. �

Since λmax(P) ≤
∑N Nν

k=1
pk

2 λmax(Pk ), the upper bound of
matrix P can be expressed as

λu (P) =
N Nv∑

k=Nv +1

pk

√
(N − r) (N − 1)

2N

∣∣∣∣
(
s(�)
)H

Aks(�)
∣∣∣∣

+
Nv∑
k=1

pkN, (33)

which is also an upper bound of the eigenvalues of matrix (P −
λu (B)s(�)(s(�))H ). Thus, problem (28) is equivalent to

minimize
s

sH
(
P − λu (B) s(�)(s(�))H − λu (P) I

)
s

subject to |sn | ≤
√

γ, n = 1, 2, . . . , N

‖s‖2 = N. (34)

The objective function of (34) can also be majorized by the
first-order approximation

u2
(
s, s(�)) = 2Re

(
sH
(
P− λu (B)s(�)(s(�))H −λu (P)I

)
s(�)
)

+
(
s(�))H(λu (P)I−P + λu (B)s(�)(s(�))H) s(�)

= 2Re
(
sH
(
P −

(
λu (B)N + λu (P)

)
I
)
s(�)
)

+
(
s(�))H(λu (P)I − P+λu (B)s(�)(s(�))H) s(�).

(35)

Ignoring the constant terms and the scalar of (35), the
majorized problem of (28) is

minimize
s

Re
(
sH z
)

subject to |sn | ≤
√

γ, n = 1, 2, . . . , N (36)

‖s‖2 = N,

where

z = (P − (λu (B) N + λu (P)) I) s(�) . (37)

The following lemma gives an optimal solution of
problem (36).

Lemma 3: An optimal solution to (36) is given by

s = PS (z) , (38)

where

PS(·) = −
(
1R+

0
(N − mγ)

)√
γum � ejarg(·)

− (1R− (N − mγ)) min{β|z|,√γ1} � ejarg(·), (39)

min {·, ·}, |·| and ejarg(·) are element-wise operations ,

1A (x) =
{

1, if x ∈ A,

0, otherwise,
(40)

um =

⎡
⎢⎢⎢⎣1, . . . 1︸ ︷︷ ︸

m

,

√
N − mγ

Nγ − mγ
, . . . ,

√
N − mγ

Nγ − mγ︸ ︷︷ ︸
N −m

⎤
⎥⎥⎥⎦

T

, (41)
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Algorithm 1: MIAFIS - Majorized Iteration for Ambiguity
Function Iterative Shaping.

Input: Initial sequence s(0)

Output: Designed sequence s
1: λu (B) =

∑N Nν

k=1 pk (N − r)
2: repeat
3: P=

∑N Nν

k=1
pk

2 (tr(AH
k S(�))Ak + tr(AkS(�))AH

k )
4: Calculate λu (P) according to (32)
5: z = (P − (λu (B)N + λu (P)) I) s(�)

6: s(�+1) = PS(z)
7: � ← � + 1
8: until convergence

and

β ∈
{

β|
N∑

n=1

min
{

β2 |zn |2 , γ
}

= N,β

∈
[
0,

√
γ

min{|zn | | |zn | �= 0}

]}
. (42)

Proof: See Appendix B �
Note that even though we derive the objective function of

(36) through two majorization steps, we can merge the two steps
into one and obtain the final surrogate function of the objective
function of (14) given by

u
(
s, s(�)) = 2u2

(
s, s(�))+ 2λu (P)N + 2λu (L)N 2

− vec(S(�))H Lvec(S(�))

= 4Re
(
sH Ps(�) − (λu (P) + λu (L) N) sH s(�)

)

−
(
2(s(�))H Ps(�) + vec(S(�))H Lvec(S(�))

)

+ 4N (λu (P) + λu (L) N)

= 4Re
(
sH (P − (λu (B)N + λu (P)) I) s(�)

)

+ constant. (43)

This surrogate function will enlighten us to an acceleration
scheme later.

Now we have finished the derivation of the algorithm for (14),
and the complete description of the overall algorithm is given
in Algorithm 1. Note that this algorithm we derived is within
the general MM framework. Thus the monotonicity can still be
guaranteed. As for the convergence, we will prove it in the next
subsection.

C. Convergence Analysis

The objective function of problem (14) is bounded by 0, and
according to the inequality (19), we have f

(
s(0)
)
≤ f
(
s(1)
)
≤

. . . ≤ f(s(�)). Thus, the sequence
{
f(s(�))

}
generated by MI-

AFIS is guaranteed to converge to a finite value. In the following,
we will analyze the convergence property of the sequence

{
s(�)
}

generated by MIAFIS.

Algorithm 2: MIAFIS Acceleration via SQUAREM.

Input: Initial sequence s(0)

Output: Designed sequence s
1: repeat
2: s1 = FMM(s(�))
3: s2 = FMM(s1)
4: q = s1 − s(�)

5: v = s2 − s1 − q
6: α = −||q||

||v ||
7: s(�+1) = −PS(s(�) − 2αq + α2v)
8: while f(s(�+1)) > f(s(�)) do
9: α = (α − 1)/2

10: s(�+1) = −PS(s(�) − 2αq + α2v)
11: end while
12: � ← � + 1
13: until convergence

Lemma 4: Let
{
s(�)
}

be the sequence generated by MI-
AFIS. Then every limit point of

{
s(�)
}

is a stationary point of
problem (14).

Proof: See Appendix C. �
D. Acceleration Schemes

For the MM algorithm, the convergence speed is mainly de-
termined by the majorized function. In our case, since the sur-
rogate function is constructed through two majorization steps, it
might be relatively loose as an upper bound of the original func-
tion. Consequently, the convergence seems likely to be relatively
slow. In order to accelerate the convergence speed, we need to
adopt some acceleration techniques which will be elaborated in
the following.

1) Acceleration via SQUAREM: SQUAREM refers to the
squared iterative method. It was proposed by Varadhan and
Roland [23] and and can be easily implemented as an “off-the-
shelf” accelerator for the MM algorithm. Compared with other
acceleration schemes, SQUAREM has two important advan-
tages: i) it only requires an MM variable updating scheme and
ii) it is guaranteed to converge.

Let FMM (·) denote the nonlinear fixed-point iteration map
of the MIAFIS algorithm. The MM updating scheme can be
expressed as s(�+1) = FMM(s(�)). The detailed implementation
of the proposed algorithm accelerated via SQUAREM is shown
in Algorithm 2. Note that applying SQUAREM may cause two
potential problems. First, SQUAREM may violate the PAR and
constant energy constraints. Second, it may violate the mono-
tonicity of the proposed MM algorithm. For the first problem,
we project the infeasible point back to the constraint set by
−PS (·). For the second problem, a strategy based on backtrack-
ing is adopted to preserve to the monotonicity, which repeatedly
halves the distance between −1 and α: α = (α − 1) /2 until
the monotonicity is achieved. Note that when α = −1, s(�) −
2αq + α2v = s2 . According to the monotonicity of the MM al-
gorithm, f (s1) ≤ f (s2). Thus, it is clear that the monotonicity
will finally be achieved when the value of α is approaching −1.

The complete description of MIAFIS acceleration via
SQUAREM is given in Algorithm 2.
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2) Acceleration via Local Majorization: As mentioned
above, the potential slowness of the convergence is mainly
caused by the double majorization, which may lead to a loose
approximation of the original objective function. Besides this,
in these two majorization steps, we use the upper bound of B
and and that of

(
P − λu (B) s(�)(s(�))H

)
, which could make

the approximation even looser. Apart from the SQUAREM
scheme, which still uses the same surrogate function, a
natural idea to accelerate the MM algorithm is to find a better
surrogate of the the original quartic objective function at every
iteration. Note that the monotonicity of the MM algorithm only
requires that u

(
s, s(�)

)
≥ f (s) at s = s(�+1) . In other words,

u
(
s, s(�)

)
does not have to be a global upper bound of f (s)

on the whole domain.
Recall the surrogate function of the original objective at the

point s(�) in (43). The term (λu (P) + λu (L) N) makes the
bound globally loose and will influence the convergence speed.
By tuning this term, we can achieve a tighter local upper bound
of the original objective function at s(�) , although it may not
be a global upper bound. Thus, we consider the following local
upper bound of f (s):

ut

(
s, s(�)) = 4Re

(
sH Ps(�) − tsH s(�)

)
+ 4Nt

−
(
2
(
s(�))H Ps(�) + vec

(
S(�))H Bvec

(
S(�)))

= 4Re
(
sH Ps(�) − tsH s(�)

)
+ 4Nt

− 2
(
s(�))H Ps(�) − f

(
s(�)), (44)

where t needs to be chosen such that ut

(
s, s(�)

)
≥ f (s) at the

minimizer of ut

(
s, s(�)

)
over the constraint set, which is

s�
t = PS

(
(P − tI) s(�)

)
. (45)

In order to understand the meaning of t, we can interpret
our acceleration scheme from another perspective. In fact, the
surrogate function (44) can be expressed in the form of

u
(
s, s(�)

)
= f
(
s(�))+ ∇f

(
s(�))T [ s − s(�)(

s − s(�)
)∗
]

+
L

2

[
s − s(�)(
s − s(�)

)∗
]H [

s − s(�)(
s − s(�)

)∗
]

, (46)

where ∇f(s(�)) = [ ∂f
∂ s

∂f
∂ s∗ ]s=z , L is an upper bound of Lf ,

the Lipschitz constant of the function f (s), which is hard to
obtain in most situations. Compared with (44), it is clear to see
that t = L

2 . In order to make L close to Lf , we adopt such a
scheme: starting from a small value of t, we keep increasing
its value until monotonicity is achieved. We know that when
t = λu (P) + λu (B)N , the monotonicity must be satisfied.

The complete description of MIAFIS acceleration via local
majorization is given in Algorithm 3.

IV. A SPECIAL CASE: UNIT-MODULUS CONSTRAINT

As mentioned at the end of Section II, when γ = 1, the PAR
constraint and constant energy constraint together become the

Algorithm 3: MIAFIS Acceleration via Local Majorization.

Input: Initial sequence s(0)

Output: Designed sequence s
1: λu (B) =

∑N Nν

k=1 pk (N − r)
2: repeat
3: P =

∑N Nν

k=1
pk

2

(
tr(AH

k S(�))Ak + tr(AkS(�))AH
k

)
4: Calculate λu (P) according to (32)
5: repeat for m in {0, 1, . . . , N − 1}
6: t = λu (P)+λu (B)N

2(N −m )

7: s�
t = PS((P − tI)s(�))

8: m ← m + 1
9: until ut(s�

t , s
(�)) > f(s�

t )
10: s(�+1)

n = s�
t

11: � ← � + 1
12: until convergence

Algorithm 4: MIAFIS - Majorized Iteration for Ambiguity
Function Iterative Shaping.

Input: Initial sequence s(0)

Output: Designed sequence s
1: λu (B) =

∑N Nν

k=1 pk (N − r)
2: repeat
3: P =

∑N Nν

k=1
pk

2

(
tr(AH

k S(�))Ak +tr(AkS(�))AH
k

)
4: Calculate λu (P) according to (32)
5: z = (P − (λu (B)N + λu (P)) I) s(�)

6: s(�+1) = −ejarg(z)

7: � ← � + 1
8: until convergence

unit-modulus constraint, |sn | = 1, n = 1, 2, . . . , N. The origi-
nal problem (10) becomes

maximize
s

SINR

subject to |sn | = 1, n = 1, 2, . . . , N. (47)

The MM updating scheme we have derived above becomes
much easier for the unit-modulus case, and PS (·) can be simpli-
fied to−ejarg(·) . The description of MIAFIS for the unit-modulus
case is given in Algorithm 4. Also, all the acceleration schemes
can still be adopted here.

However, in the derivation of MIAFIS, except for the conju-
gate symmetry, the matrix

(
P − λu (B) s(�)(s(�))H

)
does not

provide any useful properties for us to take advantage of, so
obtaining a nice upper bound of its eigenvalues is a nontrivial
issue. Thus it is natural to ask whether we can avoid such an
issue or not. In the following, we will give a positive answer.

With the unit-modulus constraint, problem (28) becomes

minimize
s

sH Qs

subject to |sn | = 1, n = 1, 2, . . . , N, (48)

where Q(�) = P − λu (B) s(�)(s(�))H .
Two features of problem (48) should be noted. First, we ob-

tain problem (48) within the MM framework, which means
that the monotonicity can still be guaranteed as long as(
s(�+1)

)H
Q(�)s(�+1) ≤ (s(�))H Q(�−1)s(�) . Second, the feasi-
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Algorithm 5: CIAFIS - Coordinate Iteration for Ambiguity
Function Iterative Shaping.

Input: Initial sequence s(0)

Output: Designed sequence s
1: λu (B) =

∑N Nν

k=1 pk (N − r)
2: repeat
3: P =

∑N Nν

k=1
pk

2

(
tr(AH

k S(�))Ak +tr(AkS(�))AH
k

)
4: for n=1:N do
5: s

(�+1)
n = −ejarg(qH

−n s−n )

6: end for
7: � ← � + 1
8: until convergence

ble set of problem (48) is a Cartesian product for sn , n =
1, 2, . . . , N.

We define Q = [q1 ,q2 , . . . ,qN ], q−n = [q1,n , q2,n , . . . ,

qn−1,n , qn+1,n , . . . qN ,n ]T and s−n = [s(�+1)
1 , s

(�+1)
2 , . . . , s

(�+1)
n−1 ,

s
(�)
n+1 , . . . s

(�)
n ]T . For the coordinate sn , n = 1, 2, . . . , N , we

have the following problem:

minimize
sn

2Re
(
qH
−ns−ns∗n

)
subject to |sn | = 1, n = 1, 2, . . . , N, (49)

which has a closed-form solution

s(�+1)
n = −ejarg(qH

−n s−n ). (50)

The complete description of this algorithm is given
in Algorithm 5.

With the above algorithm, we observe that we avoid the upper
bound at the cost of updatingP at every iteration. However, since
the majority of the parameters pk are zeros, the computation cost
is not too high. Similarly, we can also apply the acceleration
scheme SQUAREM to accelerate it.

V. COMPARISON AND CONNECTION

In this section, we will review and gain extra insight into the
proposed two algorithms. We first compare MIAFIS and CIAFIS
to reveal their advantages and disadvantages. Then we reveal
the connections between MIAFIS and the traditional gradient
projection method.

A. Comparison Between MIAFIS and CIAFIS

First, both of the algorithms are based on the general MM
method, so the monotonicity can be guaranteed and some
acceleration techniques can be adopted. The difference lies after
the first majorization: for the majorized problem, at every itera-
tion, MIAFIS chooses to majorize again, while CIAFIS turns to
the coordinate descent method. As mentioned above, the orig-
inal intent of CIAFIS is to avoid the upper bound issue of the
eigenvalues of an complicated matrix. In addition, the feasible
set is Cartesian and a closed-form solution can be found for
every coordinate. This makes CIAFIS a suitable solution for the
sequence design with the unit-modulus constraint.

In Algorithm 4, the computation of the algorithm per iteration
is dominated by

(
(s(�))H AH

k s(�)Aks(�)
)
, while in Algorithm 5,

it is dominated by
(
(s(�))H AH

k s(�)Ak

)
. However, CIAFIS also

needs to update all the N coordinates sequentially, which is
dominated by

(
q̂H
−n ŝ−n

)
per update. Therefore, the time com-

plexities of both MIAFIS and CIAFIS are O
(
N 2
)
.

CIAFIS not only avoids the upper bound issue, but also has the
same time complexity as MIAFIS. However, the convergence
is the cost CIAFIS has to pay. Notice that in the general MM
algorithm, we need to obtain the global optimal solution of the
majorized function over the feasible set in order to guarantee
the convergence to stationary points, theoretically. In CIAFIS,
we solve the majorized problem through the coordinate descent
method, which at best can provide a local optimal solution.
Nevertheless, the monotonicity, as mentioned above, can still
be guaranteed, and our numerical experiments indicate CIAFIS
usually reaches a stationary point.

B. Connections Between MIAFIS and the Traditional
Gradient Projection Method

Note that in MIAFIS with the PAR constraint, the up-
date rule for s is given by s(�+1) = PS (z), where z =
(P − (λu (L) N + λu (P))) s(�) . PS (·) could be considered a
projection operation. z includes the current iteration point s(�)

and the scaled derivative, Ps(�) , of the original objective func-
tion with respect to s∗. This reminds us of the traditional gradient
projection method. In order to reveal the potential connection,
we will review the derivation of MIAFIS from the perspective
of the gradient projection method in the following.

Recall that with the PAR constraint, after the second ma-
jorization, we obtain problem (36):

minimize
s

Re
(
sH z
)

subject to |sn | ≤
√

γ, n = 1, 2, . . . , N (51)

‖s‖2 = N,

which is equivalent to

minimize
s

‖s − ẑ‖2

subject to s ∈ S, (52)

where

ẑ = −z = ((λu (L)N + λu (P)) − P) s(�) , (53)

S =
{
s ∈ CN | ‖s‖2 = N, |sn | ≤

√
γ, n = 1, 2, . . . , N

}
. (54)

Reviewing the update rule we have derived in MIAFIS, we
have

s(�+1) = PS (z)

= −PS (ẑ)

= −PS
(
((λu (L)N + λu (P)) I − P) s(�)

)

= −PS

((
I − P

λu (L)N + λu (P)

)
s(�)
)

= −PS

(
s(�) − 1

λu (L)N + λu (P)
Ds∗f

(
s(�))), (55)
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Fig. 1. Range-Doppler interference scenario for test.

where Ds∗f(s(�)) is the derivative of the original objective func-
tion of (14) with respect to s∗ at the point s = s(�) . Therefore,
it is very clear that the update rule of MIAFIS has the same
structure as the traditional gradient projection method. How-
ever, our update rule works on the complex variables directly.
In addition to this, the traditional gradient projection method
only works over a convex set, which is essential to guarantee
its convergence [24]. Since our algorithm is within the MM
framework, the convergence can still be guaranteed even over a
nonconvex set. For radar applications, due to the finite energy
limit in reality, the feasible set is usually nonconvex. In addition,
the step size of our update rule is adaptive, which provides more
flexibility and avoids the trouble of using the Armijo rule.

VI. NUMERICAL EXPERIMENTS

In this section, we first present the testing scenario and give a
brief explanation. Second, we present some experimental results
to illustrate the proposed algorithm with the PAR constraint.
Last, for the unit-modulus case, we compare the performance
of the proposed algorithms with the existing algorithms to show
the improved performance. All experiments were implemented
in MATLAB R2014b and performed on a PC with a 3.30 GHz
i5-4950 CPU and 8 GB RAM.

A. Testing Scenario

We consider the range-Doppler interference scenario shown
in Figure 1, where we take the sequence length N = 25 as an
example to illustrate our performance analysis. In this interfer-
ence map, the red blocks correspond to the regions of unwanted
range-Doppler returns (e.g., interference, fake target, etc.). The
normalized Doppler frequency axis is discretized into Nv =
50 bins, and consequently the discrete Doppler frequency is
given by vh = − 1

2 + h
50 , h = 0, 1, . . . , 49. In addition, a uni-

form interference power is assumed among the interference bins.

Fig. 2. Convergence of MIAFIS algorithms for N = 25.

To be more specific, we take

p(r, h) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 (r, h) ∈ {2, 3, 4} × {35, 36, 37, 38}
1 (r, h) ∈ {3, 4} × {18, 19, 20}
1 (r, h) ∈ {1, 2, . . . , N − 1} × {25}
0 otherwise.

(56)

Note that in this interference map, we not only suppress the un-
wanted range-Doppler returns, but also control the ISL over all
the lags of the autocorrelation of the transmitted sequence. Also,
weighted ISL control can be readily incorporated by letting the
p(r, h) corresponding to some particular sidelobes be zero. Fur-
thermore, by assuming a uniform interference power, we don’t
give any priority or preference to the interference or ISL. In the
following, all the simulations are based on the above scenario
(56) unless otherwise specified. Also note that all the simula-
tions in the following two sections are based on the particular
system model described above. To the best of our knowledge,
there is no benchmark considering both the same system model
and the PAR constraint.

B. Sequence Design to Improve Ambiguity Function with the
PAR Constraint

In Figure 2, we plot the convergence curves of the objective
value with respect to the number of iterations for the above
scenario. A randomly generated sequence is used as the initial
one, and the PAR parameter here is γ = 4. From this figure, we
can see clearly that the two accelerated algorithms require far
fewer iterations (around 2-3 orders of magnitude less).

Recall that the squared magnitude of the ambiguity function
of the matched filter of the radar sequence s after normalization
is given by

gs (r, v) =
1

‖s‖2

∣∣sH Jr diag (p (v)) s
∣∣2 . (57)

In Figure 3, we compare the ambiguity function of the initial
random sequence and that of the designed sequence for the
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Fig. 3. Ambiguity function. Left: Initial sequence; Right: Designed sequence.

Fig. 4. Ambiguity function cut at different r = 2, 3, 4; Ambiguity function
cut at ν = 0.

above scenario. From this comparison, we can see clearly that
the unwanted range-Doppler responses in the two red blocks
are suppressed to a very low level and the ISL is significantly
improved. In Figure 4, we provide the range-cuts for different
values of r, and also the autocorrelation. From both Figure 3 and
Figure 4, it is clear to see that the shaped ambiguity function
experiences deep nulls where interference is foreseen, which
indicates that the proposed algorithms shape the range-Doppler
response very well.

In Figure 5, we show the achieved performance with respect
to the PAR parameter γ. sini and snew are the initial sequence
and the corresponding designed sequence, respectively, for a
particular γ. Specifically, except the case of γ = 1, where sini

is generated randomly, sini for every γ is snew for the previous
γ. The objective value is the converged value for every γ. The
left-hand plot is the curve of the objective value with respect
to the PAR parameter γ, while the right-hand plot shows the
difference between sini and snew for every value of γ. From

Fig. 5. Left: Objective value v.s. PAR parameter γ (the stepsize of γ is 0.1);
Right: ||sn ew − sin i ||2 v.s. PAR parameter γ .

Fig. 6. Smallest objective value v.s. γ . Each point is averaged over 1000
random trials.

Figure 5, we can clearly see that the objective value is nonin-
creasing with γ, which is consistent with our intuition that the
feasible set becomes larger when γ keeps increasing. In particu-
lar, when the value of γ changes from 1 to 2, the objective value
decreases significantly. But the objective value barely changed
for γ > 5, which can be verified by the right-hand plot, where
each snew is almost the same for γ > 5. From the perspective of
optimization, it is advantageous to choose a large γ to achieve
a good performance. However, in practice, a large γ will result
in a designed sequence with a high PAR, which is usually un-
desirable, for it is difficult to implement and usually strains the
analog circuit [25].

In Figure 6, different from the plot scheme above, we run
MIAFIS 1000 times with different initial sequences for every
value of γ, and we plot the smallest objective value among
them. Note that there are 2N = 50 degrees of freedom (the free
phases and magnitudes of sequence {sn}N

n=1), and our goal is to
match 42 tags of the range-Doppler response (the interference
and ISL regions of the whole range-Doppler plan). Thus, there
are enough degrees of freedom, and, consequently, the global
optimal value can be driven close to 0, which can be observed
clearly in this figure, especially when γ > 22. Besides, the above
simulation scheme reminds us that, in practice, we can run our
algorithm with different initial points independently and then
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Fig. 7. Objective value versus sequence length N .

Fig. 8. Numerical resluts on the testing scenario given by (58). Top left: Test-
ing scenario; Top right : Ambiguity Function; Bottom left: Ambiguity function
cut at r = 11; Bottom right: Ambiguity function cut at ν = 0.

select the best solution among the outputs, which is probably
the optimal one.

Also, in Figure 7, we plot the curves of the objective value
with respect to different sequence lengths N for different
sequences. Note that we can see clearly that our designed
sequences still achieve good performance even for a long
sequence. In addition, if the scenario does not change, we can
shape the ambiguity function much better by using a longer
sequence, which means we can achieve a better SINR.

Since our algorithms are locally convergent, we test our our
algorithm on two more testing scenarios given by, respectively,

p(r, h)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.5 (r, h)∈{4, 5}×{35, 36, 37, 38}
2 (r, h)∈{10, 11, 12}×{23, 24, 25, 26}
1 (r, h)∈{10, 11}×{4, 5, 6}
1 (r, h)∈{1, . . . , 9, 13, . . . , N − 1}×{25}
0 otherwise.

(58)

Fig. 9. Numerical resluts on the testing scenario given by (59). Top left: Test-
ing scenario; Top right : Ambiguity Function; Bottom left: Ambiguity function
cut at r = 11; Bottom right: Ambiguity function cut at ν = 0.

and

p(r, h)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.5 (r, h)∈{4, 5}×{35, 36, 37, 38}
4 (r, h)∈{10, 11, 12}×{23, 24, 25, 26}
1 (r, h)∈{10, 11}×{4, 5, 6}
1 (r, h)∈{1, . . . , 9, 13, . . . , N − 1}×{25}
0 otherwise.

(59)

Compared with the testing scenario shown in 1, these two
tesing scenarios have different locations and values of nonzero
p (r, h)s. The simulation resluts are shown in Figure 8 and
Figure 9. In both figures, the ambiguity functions shaped by our
algorithm match the corresponding range-Doppler interference
scenarios very well. This indicates that our algorithm adapts to
various situations.

C. Sequence Design to Improve Ambiguity Function with
Unit-modulus Constraint

In Figure 10 and Figure 11, we plot the convergence curves
for the unit-modulus case using MIAFIS and CIAFIS. From
this figure, we can see that CIAFIS also works very well and
achieves almost the same performance as MIAFIS.

Note that the performances of both MIAFIS and CIAFIS are
related to the initial sequence. In order to show the extent of
the influence of the initial sequence to our algorithms, we plot
the curve of the averaged SINR with sequence length N in
Figure 12. The curve is averaged over 100 trials, which have
different randomly-generated initial sequence. The bar for each
point indicates the range of the acieved SINR among the 100 tri-
als for the corresponding N . From Figure 12, the range is usually
less than 3 dB.

In Figure 13 and Figure 14, we compare, respectively, the
ambiguity functions and the ambiguity function cuts of the de-
signed sequences by our methods and the benchmark, MBI-type
methods. The testing scenario is shown in Figure 1 and the se-
quence length is N = 25. Notice that for the MBI-type methods,
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Fig. 10. Objective value versus the number of iterations. N = 25.

Fig. 11. Objective value versus time (in seconds). N = 25.

we choose the best one (MBIQ with 0.5λ) for the comparison.
From Figure 13, it is clear to see that all of the methods can shape
a desired ambiguity function although the designed sequences
are different. Figure 14 shows that all the shaped ambiguity
functions have deep nulls where the interference is forseen.

Then, we compare the performance of our methods with the
MBI methods in terms of the CPU time and the achieved SINR,
as shown in Figure 15. The two red blocks of the testing scenario
shown in Figure 1 remain unchanged, while the ISL control line
continues to increase with the sequence length N . Considering
the CPU time, our methods are much better than the MBI-type
methods. Note that in each MBI-type method, the parameter λ
has to be evaluated appropriately to guarantee the monotonicity.
However, evaluating the satisfactory value of λ is not trivial,
and in [15] it was in fact obtained by solving an optimization
problem. For more details, please refer to [15]. Even if we do not
include the time for obtaining λ, our methods are still better that

Fig. 12. SINR versus sequence length. Each curve is averaged over
100 random trials

Fig. 13. Comparison of the ambiguity functions. Top left: MIAFIS; Top right:
CIAFIS; Bottom: MBI.

Fig. 14. Comparison of the ambiguity function cuts.
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Fig. 15. Top: Average CPU time v.s. N ; Bottom: Average objective value
v.s. N , where |α|2 = 1 and σ2

n = 0.5. Each curve is averaged over 100 random
trials.

the MBI-type methods, and can outperform them. Considering
the SINR, it is also very clear to see that a longer sequence
achieves a higher SINR, which can also be interpreted from the
perspective of degrees of freedom. Note that for the MBI-type
methods, the running time will increase vastly for N ≥ 100
and the memory of the PC we use is insufficient, thus we only
provide the cases for N ≤ 50. However, this does not affect the
comparison and performance evaluation.

VII. CONCLUSION

Sequence design for radar systems can be interpreted from the
perspective of improving the ambiguity function. Starting from
raising the SINR, we have derived an efficient algorithm called
MIAFIS for sequence design with the PAR and finite energy
constraints to improve the ambiguity function. The MIAFIS is
derived based on the general MM method and its convergence to
a stationary point can be guaranteed. Additionally, in case of the

ill-construction of the majorization function, two acceleration
schemes have been considered. We also consider the unimodular
case, which is a particular case of the general PAR formulation.
Another efficient algorithm, CIAFIS, based on the MM method
and coordinate descent method, has been proposed. Numerical
experiments show the efficiency of the proposed algorithms
in designing sequences with desired ambiguity functions and
demonstrate their advantages in terms of both the CPU time and
SINR compared with the existing methods.

APPENDIX

A. Proof of Lemma 2

Proof: First, we have

tr(Pk ) = tr
(

tr
(
AH

k S(�))Ak + tr
(
AkS(�))AH

k

)

= tr
(
AH

k S(�))tr(Ak

)
+ tr
(
AkS(�))tr (AH

k

)

= 2Re
(

tr
(
AH

k S(�))tr(Ak

))
(60)

and

tr(P2
k ) = vec (Pk )H vec (Pk ) . (61)

If r �= 0, Tr(Ak ) = 0. Thus Tr (Pk ) = 0. Considering the
special structure of Pk , we have

Tr(P2
k ) = vec (Pk )H vec (Pk )

=
∣∣∣(s(�))H Aks(�)

∣∣∣2 vec (Ak )H vec
(
Ak

)

+
∣∣∣(s(�))H Aks(�)

∣∣∣2 vec
(
AH

k

)H
vec
(
AH

k

)

+
(
s(�))H Aks(�)(s(�))H Aks(�)vec

(
Ak

)H
vec
(
AH

k

)

+
(
s(�))H AH

k s(�)(s(�))HAH
k s(�)vec

(
AH

k

)H
vec(Ak)

= 2 (N − r)
∣∣∣∣
(
s(�)
)H

Aks(�)
∣∣∣∣
2

, (62)

where the last equality holds because vec(Ak )H vec(Ak ) =
vec(AH

k )H vec(AH
k ) = N − r and vec(Ak )H vec(AH

k ) = vec
(AH

k )H vec(Ak ) = 0.
Thus according to Lemma 1, we have

m = 0, s2 =
2 (N − r)

N

∣∣∣(s(�))H Aks(�)
∣∣∣2 (63)

and

λmax(Pk ) ≤
√

2 (N − r) (N − 1)
N

∣∣∣(s(�))H Aks(�)
∣∣∣ . (64)

If r = 0, then Pk is a diagonal matrix. So we just need to find
an upper bound of the diagonal elements. We have

Tr
(
AkS(�)) =

N −1∑
i=0

ej2πivh . (65)
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Define p =
[
1, ej2πνh , . . . , ej2π (N −1)νh

]T
, and then we have

Pk =

(
N −1∑
i=0

ej2πivh

)
(Diag (p))H

+

(
N −1∑
i=0

e−j2πivh

)H

(Diag (p))

= Diag

⎛
⎝
{

N −1∑
i=0

2cos (2π (i − d) vh)

}N −1

d=0

⎞
⎠ . (66)

For d = 0, 1, . . . , N − 1, we have
∑N −1

i=0 2cos(2π(i − d)vh)
≤ 2N . Thus,

λmax(Pk ) ≤ 2N. (67)

The proof is complete. �

B. Proof of Lemma 3

Proof: The objective of problem (36) can be expressed
equivalently as

Re
(
sH z
)

=
N∑

n=1

|sn | |zn | cos (arg (zn ) − arg (sn )) . (68)

Since |sn | |zn | ≥ 0 and the argument and the magnitude
of sn are independent, Re

(
sH z
)

get its minimum when
arg (sn ) = arg (zn ) + (2k + 1) π, ∀k = 0,±1, . . .. Therefore,
sn = − |sn | ejarg(zn ) and problem (36) can be further
simplified as

maximize
|sn |

N∑
n=1

|sn | |zn |

subject to |sn | ≤
√

γ

N∑
n=1

|sn |2 = N, n = 1, 2, . . . , N, (69)

which can be rewritten in a vector form:

maximize
|s|

|s|T |z|

subject to 0 ≤ |s| ≤ √
γ1

|s|T |s| = N, (70)

where |·| denotes elementwise absolute value.
Without loss of generality, we assume that |z1 | ≥ |z2 | ≥

· · · ≥ |zN | and the number of nonzero elements of z is m. Then
the solution to problem (69) is as follows:

if mγ ≤ N , then |sn | =
√

γ, for n = 1, . . . , m. For n =
m + 1, . . . , N , we have

∑N
n=m+1 |sn |2 = N − mγ and 0 ≤

|sn | ≤
√

γ. Thus, there are multiple solutions to problem (69)
for this case and one of them is given by

|sn | =

⎧⎨
⎩

√
γ, n = 1, . . . , m,√
N −mγ
N −m , n = m + 1, . . . , N.

(71)

If mγ > N , then the solution to problem (69) is given by

|sn | = min {β |zn | ,
√

γ} , n = 1, . . . , N, (72)

where

β ∈
{

β|
N∑

n=1

min
{

β2 |zn |2 , γ
}

= N,β ∈
[
0,

√
γ

min{|zn | | |zn | �= 0}

]}
. (73)

Since the function g(β) =
∑N

n=1 min{β2 |zn |2 , γ} is strictly

increasing within [0,
√

γ

min{|zn | | |zn |�=0} ] and g(0) = 0, only one
unique β exists. Numerically, the simple bisection method can
be adopted to find the unique β with a high degree of accuracy.

Therefore, the solution to problem (36) is given by

s = PS (z) , (74)

where

PS (·) = −
(
1R+

0
(N − mγ)

)√
γum � ejarg(·)

− (1R− (N − mγ)) min{β|z|,√γ1} � ejarg(·), (75)

min{·, ·}, | · | and ejarg(·) are element-wise operations, and

1A (x) =

{
1, if x ∈ A,

0, otherwise.
(76)
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T
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�

C. Proof of Lemma 4

Proof: First, every point of the sequence {s(�)} is bounded
with 0 ≤ |s(�) | ≤ √

γ. According to Theorem 2.17 in [26], at
least one limit point must exist.

Denote the objective function of problem (14) by f(s) and the
feasible set by S. Consider a limit point z and the corresponding
subsequence {s(�i )}. We have

u
(
s(�i + 1 ) , s(�i + 1 )) = f

(
s(�i + 1 )) ≤ f

(
s(�i +1))

≤ u
(
s(�i +1) , s(�i )

)
≤ u
(
s, s(�i )

)
,

∀s ∈ S. (78)

Letting i → ∞, we obtain

u (z, z) ≤ u (s, z) , ∀s ∈ S, (79)

which implies

∇u (z, z)T

[
s − z

(s − z)∗
]
≥ 0, ∀s ∈ S, (80)

where

∇u (z, z) =
[

∂u
∂ s

∂u
∂ s∗
]
(s, s∗)=(z, z∗) . (81)
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From the deviation of the majorization function (43) of the
objective of problem (14), we can see clearly that

∇f (z) = ∇u (z, z) . (82)

Therefore, z is a stationary point for problem (14). �
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